منابع مشابه
Modular gracious labellings of trees
A gracious labelling g of a tree is a graceful labelling in which, treating the tree as a bipartite graph, the label of any edge (d,u) (d a ‘down’ and u an ‘up’ vertex) is g(u) – g(d). A gracious k-labelling is one such that each residue class modulo k has the ‘correct’ numbers of vertex and edge labels that is, the numbers that arise by interpreting the labels of a gracious labelling modulo k....
متن کاملConnections between labellings of trees
There are many long-standing conjectures related with some labellings of trees. It is important to connect labellings that are related with conjectures. We find some connections between known labellings of simple graphs.
متن کاملRelaxed Graceful Labellings of Trees
A graph G on m edges is considered graceful if there is a labelling f of the vertices of G with distinct integers in the set {0, 1, . . . ,m} such that the induced edge labelling g defined by g(uv) = |f(u) − f(v)| is a bijection to {1, . . . ,m}. We here consider some relaxations of these conditions as applied to tree labellings: 1. Edge-relaxed graceful labellings, in which repeated edge label...
متن کاملconnections between labellings of trees
there are many long-standing conjectures related with some labellings of trees. it is important to connect labellings that are related with conjectures. we find some connections between known labellings of simple graphs.
متن کاملConstructing Trees with Graceful Labellings Using Caterpillars
Hrnciar and Haviar [3] gave a method to a construct a graceful labeling for all trees of diameter at most five. Based on their method and the methods described in Balbuena et al [1], we shall describe a new construction for gracefully labeled trees by attaching trees to the vertices of a tree admitting a bipartite graceful labeling.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2001
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(00)00318-6